RACE CONDITION

Vasya has written a program that launches \boldsymbol{n} threads having $\boldsymbol{m}_{\boldsymbol{i}}$ instructions each.
At any point in time the CPU is executing a single instruction from a single thread. The instructions in a thread are always executed in order (switching to other threads is possible).

After all instructions in a thread have been executed, the CPU ignores this thread.
Let us define an execution path as an ordered list of actually executed instructions from different threads.

Write a program to calculate the number of different execution paths (accounting for all possible switches between threads) for a multi-threaded program.

Limitations

$$
1 \leq \boldsymbol{n} \leq 10 ; 1 \leq \boldsymbol{m}_{\boldsymbol{i}} \leq 20,1 \leq \boldsymbol{i} \leq \boldsymbol{n}, \sum m_{i} \leq 20 .
$$

Input

The first line of the input file defines the number of threads \boldsymbol{n}.
The second line contains \boldsymbol{n} space-delimited integers $\boldsymbol{m}_{\boldsymbol{i}}$, the number of instructions in the threads.

Output

The number of different execution paths.

Examples

№	stdin	stdout
1	2	6
	22	60
2	3	
	123	

