RACE CONDITION

Vasya has written a program that launches n threads having m_i instructions each.

At any point in time the CPU is executing a single instruction from a single thread. The instructions in a thread are always executed in order (switching to other threads is possible).

After all instructions in a thread have been executed, the CPU ignores this thread.

Let us define an *execution path* as an ordered list of actually executed instructions from different threads.

Write a program to calculate the number of different execution paths (accounting for all possible switches between threads) for a multi-threaded program.

Limitations

 $1 \le n \le 10; 1 \le m_i \le 20, 1 \le i \le n, \sum m_i \le 20$.

Input

The first line of the input file defines the number of threads *n*.

The second line contains n space-delimited integers m_i , the number of instructions in the threads.

Output

The number of different execution paths.

Examples

N⁰	stdin	stdout
1	2	6
	2 2	
2	3	60
	123	