CHOOSING ICE CREAM

You are standing in the supermarket in front of the freezers. You have a very tough task ahead
of you: you have to choose what type of ice cream you want for after dinner that evening. After a
while, you give up: they are all awesome! Instead, you take your (fair) k-sided die out of your
pocket and you decide to let fate decide.

Of course, the number of ice cream choices, n, may not be precisely k, in which case you could
not just throw the die once, rolling i, and take the ith ice cream choice. You therefore have to use
some algorithm that involves zero or more die throws that results in an ice cream choice with
every choice being exactly equally likely. Being a good computer scientist, you know about the
accept-reject method, which would let you make such a fair choice.

At that point, you remember that you have a very important competition to attend that same
afternoon. You absolutely cannot afford to be late for that competition. Because of this, you
decide you cannot use the accept-reject method, as there may be no bound on the number of die
throws needed to ensure a fair result, so you may end up standing there for a long time and miss
the competition! Instead, you resolve to find an algorithm that is fair and uses as few dice choices
as possible in the worst case.

Given n and k, can you determine the minimum number i such that there is a fair algorithm that
uses at most i die throws per execution?

Input

On the first line one positive number: the number of test cases, at most 100. After that per test
case:

* one line with two space-separated integers n and k (1 <n, k<109 ): the number of ice cream
choices and the number of sides of your die, respectively.

Output

Per test case:

* one line with a single integer: the smallest number of throws after which you are guaranteed to
be able to make a fair choice. If there is no such number, print “unbounded” instead.

Examples
Ne stdin stdout
1 3 2
42 1
24 unbounded
32




	CHOOSING ICE CREAM
	Input
	Output
	Examples


