JEALOUS NUMBERS

There is a trouble in Numberland, prime number p is jealous of another prime number q. She thinks that there are more integer numbers between a and b, inclusively, that are divisible by greater power of q than that of p. Help p to get rid of her feelings.

Let $\alpha(n, x)$ be maximal k such that n is divisible by $x k$. Let us say that a number n is p dominating over q if $\alpha(n, p)>\alpha(n, q)$. Find out for how many numbers between a and b, inclusive are p-dominating over q.

Input

The first line of the input file contains a, b, p and $q\left(1 \leq a \leq b \leq 10^{18} ; 2 \leq p, q \leq 10^{9} ; p f=q ; p\right.$ and q are prime).

Output

Output one number - how many numbers n between a and b, inclusive, are p-dominating over q.

Example

№	stdin	stdout
1	12032	4

