FENWICK TREE

Fenwick tree is a data structure effectively supporting *prefix sum* queries.

For a number t denote as h(t) maximal k such that t is divisible by 2^k . For example, h(24) = 3, h(5) = 0. Let $l(t) = 2^{h(t)}$, for example, l(24) = 8, l(5) = 1.

Consider array a[1], a[2], ..., a[n] of integer numbers. Fenwick tree for this array is the array b[1], b[2], ..., b[n] such that

$$b[i] = \sum_{j=i-l(i)+1}^{i} a[j].$$

So

$$b[1] = a[1],$$

$$b[2] = a[1] + a[2],$$

$$b[3] = a[3],$$

$$b[4] = a[1] + a[2] + a[3] + a[4],$$

$$b[5] = a[5],$$

$$b[6] = a[5] + a[6],$$

...

For example, the Fenwick tree for the array

$$a = (3, -1, 4, 1, -5, 9)$$

is the array

$$b = (3, 2, 4, 7, -5, 4).$$

Let us call an array *self-fenwick* if it coincides with its Fenwick tree. For example, the array above is not self-fenwick, but the array a = (0, -1, 1, 1, 0, 9) is self-fenwick.

You are given an array a. You are allowed to change values of some elements without changing their order to get a new array a' which must be self-fenwick. Find the way to do it by changing as few elements as possible.

Input

The first line of the input file contains n ($1 \le n \le 100000$.) — the number of elements in the array. The second line contains n integer numbers — the elements of the array. The elements of the input array do not exceed 10^9 by their absolute values.

Output

Output *n* numbers — the elements of the array *a*'. If there are several solutions, output any one.

Examples

Nº	stdin	stdout
1	6	0 -1 1 1 0 9
	3 -1 4 1 -5 9	