FENWICK TREE

Fenwick tree is a data structure effectively supporting prefix sum queries.
For a number t denote as $h(t)$ maximal k such that t is divisible by 2^{k}. For example, $h(24)=3, h(5)=0$.
Let $I(t)=2^{h(t)}$, for example, $I(24)=8, I(5)=1$.
Consider array $a[1], a[2], \ldots, a[n]$ of integer numbers. Fenwick tree for this array is the array $b[1], b[2]$, $\ldots, b[n]$ such that

$$
b[i]=\Sigma^{i}{ }_{j}=i-l(i)+1 a[j] .
$$

So

$b[1]=a[1]$,
$b[2]=a[1]+a[2]$,
$b[3]=a[3]$,
$b[4]=a[1]+a[2]+a[3]+a[4]$,
$b[5]=a[5]$,
$b[6]=a[5]+a[6]$,

For example, the Fenwick tree for the array

$$
a=(3,-1,4,1,-5,9)
$$

is the array

$$
b=(3,2,4,7,-5,4) .
$$

Let us call an array self-fenwick if it coincides with its Fenwick tree. For example, the array above is not self-fenwick, but the array $a=(0,-1,1,1,0,9)$ is self-fenwick.
You are given an array a. You are allowed to change values of some elements without changing their order to get a new array a^{\prime} which must be self-fenwick. Find the way to do it by changing as few elements as possible.

Input

The first line of the input file contains $n(1 \leq n \leq 100000$.) - the number of elements in the array. The second line contains n integer numbers - the elements of the array. The elements of the input array do not exceed 10^{9} by their absolute values.

Output

Output n numbers - the elements of the array a '. If there are several solutions, output any one.

Examples

№	stdin	stdout	
1	6		$0-111109$
	$3-141-59$		

