Ուղարկել | Բոլոր լուծումները | Լավագույն լուծումները | Վերադառնալ ցուցակին |
ACM_0069 - PISANO PERIODS |
In 1960, Donald Wall of IBM, in White Plains, NY, proved that the series obtained by taking each element of the Fibonacci series modulo m was periodic.
For example, the first ten elements of the Fibonacci sequence, as well as their remainders modulo 11, are:
n |
|
|
| |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
F |
(n) |
|
| |
1 |
1 |
2 |
3 |
5 |
8 |
13 |
21 |
34 |
55 |
F |
(n) mod |
11 |
| |
1 |
1 |
2 |
3 |
5 |
8 |
2 |
10 |
1 |
0 |
The sequence made up of the remainders then repeats. Let k(m) be the length of the repeating subsequence; in this example, we see k(11) = 10.
Wall proved several other properties, some of which you may find interesting:
- If m > 2, k(m) is even.
- For any even integer n > 2, there exists m such that k(m) = n.
- k(m) ≤ m2 − 1
- k(2n) = 3 ∗ 2n−1
- k(5n) = 4 ∗ 5n
- k(2 ∗ 5n) = 6n
- If n > 2, k(10n) = 15 ∗ 10n−1
For this problem, you must write a program that calculates the length of the repeating subsequence, k(m), for different modulo values m.
Input
The first line of input contains a single integer P , (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set is a single line that consists of two space separated integer values N and M .
N is the data set number. M is the modulo value (2 ≤ M ≤ 1, 000, 000).
Output
For each data set there is one line of output. It contains the data set number (N ) followed by a single space, followed by the length of the repeating subsequence for M , k(M ).
Examples
№ |
stdin |
stdout |
1 |
5 1 4 2 5 3 11 4 123456 5 987654 |
1 6 2 20 3 10 4 15456 5 332808 |
Ավելացրեց. | Հրանտ Հովհաննիսյան |
Ամսաթիվ. | 2014-01-05 |
Ժամանակի սահմանափակումը. | 1s |
Ծրագրի տեքստի սահմանափակումը. | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Լեզուներ. | Բոլորը բացի ASM32 ASM64 GAWK CLPS CLOJURE D ERL FSHARP FORTRAN GOSU HASK ICON ICK NEM NIM OBJC-CLANG PICO PIKE PYPY PYPY3 PY_NBC RUST SCM guile CHICKEN SED TCL WHITESPACE |
Աղբյուրը. | NA Greater New York 2013.D |