## EVIL \& ODIOUS

A non-negative integer is called evil if has an even number of ones in its binary representation. Similarly, a non-negative integer is called odious if has an odd number of ones in its binary representation. Let us write down evil and odious numbers in ascending order.

| Number index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | $\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Evil number | 0 | 3 | 5 | 6 | 9 | 10 | 12 | 15 | 17 | 18 | 20 | 23 | 24 | 27 | $\ldots$ |
| Odious number | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 19 | 21 | 22 | 25 | 26 | $\ldots$ |

Let $\mathbf{E}(\mathbf{n})$ be the $\mathbf{n}$-th evil number in this list. Similarly, let $\mathbf{O}(\mathbf{n})$ be the $\mathbf{n}$-th odious number.
Write a program to calculate the sum of n-th evil and odious numbers $\mathbf{E ( n ) + O ( n )}$ given their index $\mathbf{n}$.

## Input

The input file contains a single integer, $\mathbf{n}(\mathbf{1} \leq \mathbf{n} \leq 1000000)$.

## Output

The output file should contain a single integer, the sum $\mathbf{E ( n )}+\mathbf{O}(\mathbf{n})$.

## Example

| № | stdin |  |
| :---: | :--- | :--- |
| 1 | 1 | 1 |
| 2 | 10 | 37 |

