INTERESTING INTEGERS

Undoubtedly you know of the Fibonacci numbers. Starting with $F_{1}=1$ and $F_{2}=1$, every next number is the sum of the two previous ones. This results in the sequence $1,1,2,3,5,8,13, \ldots$.

Now let us consider more generally sequences that obey the same recursion relation

$$
G_{i}=G_{i-1}+G_{i-2} \text { for } i>2
$$

but start with two numbers $G_{1} \leq G_{2}$ of our own choice. We shall call these Gabonacci sequences. For example, if one uses $G_{1}=1$ and $G_{2}=3$, one gets what are known as the Lucas numbers: 1,3 , $4,7,11,18,29, \ldots$.. These numbers are - apart from 1 and 3 - different from the Fibonacci numbers.

By choosing the first two numbers appropriately, you can get any number you like to appear in the Gabonacci sequence. For example, the number n appears in the sequence that starts with 1 and $n-1$, but that is a bit lame. It would be more fun to start with numbers that are as small as possible, would you not agree?

Input

On the first line one positive number: the number of test cases, at most 100. After that per test case:

- one line with a single integer $n\left(2 \leq n \leq 10^{9}\right)$: the number to appear in the sequence.

Output

Per test case:

- one line with two integers a and $b(0<a \leq b)$, such that, for $G_{1}=a$ and $G_{2}=b, G_{k}=n$ for some k. These numbers should be the smallest possible, i.e., there should be no numbers a^{t} and b^{t} with the same property, for which $b^{t}<b$, or for which $b^{t}=b$ and $a^{t}<a$.

Examples

№	stdin		stdout
1	5	11	
	89	13	
	123	210	
	1000	9851971	
	1573655	27	
	842831057		

