GIVEN A STRING

Peter's Boss is now very upset. He said that Peter's vision of the orthogonal sum of two strings is not collinear to the general pary line of *RIGS*. At least, it is very bad that the orthogonal sum of two strings in Peter's vision can be different depending on a selected set of strings. But Boss decided to give Peter a last str. . . well, a chance.

Peter's colleague Andrew invented another definition of orthogonal sum of two strings of equal length *n*, which depends only on the alphabet. The basic alphabet to define this operation consists only of zeros and ones. The orthogonal sum of two strings $a \oplus b$ is just a string *c* where $ci = ai \oplus bi$ (*Si* denotes *i*-th character of string *S*). Here \oplus stands for *exclusive OR* operation which returns 0 for equal characters and 1 otherwise.

Now Peter must study properties of *orthogonal closure* of a given string *S*. The orthogonal closure of *S* (denoted $S\oplus$) is a set of strings $S(k) \oplus S(l)$ for any $0 \le k, l \le n - 1$, where *n* is the length of *S*, and *S*(*k*) denotes an operation of *k*-th circular shift of *S* — moving *k* last characters from the end of the string *S* to its beginning. For example, the second circular shift of abcde is deabc.

Given a string T, Peter's task is to check whether it belongs to $S \oplus$. Could you solve this task for him?

Input

The first line of the input file contains a given string T. The second line contains S. Both strings are of equal length in range from 1 to 5 000 characters. All characters in these strings are zeros or ones.

Output

If a given string belongs to $S\oplus$, output "Yes". Otherwise output "No".

Examples

N⁰	stdin	stdout
1	11111	No
	10101	
2	11110	Yes
	10101	