SUMS

The nth Triangular number, $\mathrm{T}(\mathrm{n})=1+\ldots+\mathrm{n}$, is the sum of the first n integers. It is the number of points in a triangular array with n points on side.

Write a program to compute the weighted sum of triangular numbers:

$$
W(n)=S U M\left[k=1 . . n ; k^{*} T(k+1)\right]
$$

Input.

The first line of input contains a single integer $N,(1 \leq N \leq 1000)$ which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer n, $(1 \leq n \leq 300)$, which is the number of points on a side of the triangle.

Output.

For each dataset, output on a single line the dataset number, (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum, $\mathrm{W}(\mathrm{n})$, of triangular numbers for n .

Sample test.

\mathbf{N}	stdin	stdout
1	4	1345
	3	
	4	24105
	5	35210
	10	4102145

